Therapeutic angiogenesis in ischemic limbs.
نویسنده
چکیده
In this issue of Circulation, Baumgartner et al 1 report a significant advance in angiogenic gene therapy. The authors induced collateral neovascularization in 10 critically ischemic limbs in 9 patients by the intramuscular gene transfer of naked plasmid DNA encoding the 165-amino-acid isoform of the human angiogenic protein, vascular endothelial growth factor (phVEGF165). The plasmid DNA was injected directly into the muscle of ischemic limbs. Anatomic and functional efficacy was demonstrated by increased serum levels of VEGF, improved hemodynamic measurements and angiographic evaluation, reduced pain, increased healing of ischemic ulcers, limb salvage, and immunohistochemical evidence of proliferating endothelial cells in tissue specimens. The authors emphasize that this is the first medical therapy to achieve an increase in limb perfusion that is equivalent to or greater than successful surgical or percutaneous intervention.
منابع مشابه
Hydrogen sulfide improves vessel formation of the ischemic adductor muscle and wound healing in diabetic db/db mice
Objective(s): It has been demonstrated that hydrogen sulfide plays a vital role in physiological and pathological processes such as regulating inflammation, oxidative stress, and vessel relaxation. The aim of the study was to explore the effect of hydrogen sulfide on angiogenesis in the ischemic adductor muscles of type 2 diabetic db/db mice and ischemic diabetic wound...
متن کاملCorrection: FOXO4-Knockdown Suppresses Oxidative Stress-Induced Apoptosis of Early Pro-Angiogenic Cells and Augments Their Neovascularization Capacities in Ischemic Limbs
The effects of therapeutic angiogenesis by intramuscular injection of early pro-angiogenic cells (EPCs) to ischemic limbs are unsatisfactory. Oxidative stress in the ischemic limbs may accelerate apoptosis of injected EPCs, leading to less neovascularization. Forkhead transcription factor 4 (FOXO4) was reported to play a pivotal role in apoptosis signaling of EPCs in response to oxidative stres...
متن کاملSustained delivery of sphingosine-1-phosphate using poly(lactic-co-glycolic acid)-based microparticles stimulates Akt/ERK-eNOS mediated angiogenesis and vascular maturation restoring blood flow in ischemic limbs of mice.
Therapeutic angiogenesis is a promising strategy for treating ischemia. The lysophospholipid mediator sphingosine-1-phosphate (S1P) acts on vascular endothelial cells to stimulate migration and tube formation, and plays the critical role in developmental angiogenesis. We developed poly(lactic-co-glycolic-acid) (PLGA)-based S1P-containing microparticles (PLGA-S1P), which are biodegradable and co...
متن کاملImpaired potency of bone marrow mononuclear cells for inducing therapeutic angiogenesis in obese diabetic rats.
Using Zucker fatty rats, a strain characterized by diabetes and hyperlipidemia, we investigated the diabetes- and hyperlipidemia-related impairment of bone marrow mononuclear cells (BMCs) for inducing therapeutic angiogenesis. BMCs from Zucker fatty and normal Zucker lean rats were collected and cultured. Although the characterization and cell survival of BMCs did not differ, the VEGF productio...
متن کاملiPS cell sheets created by a novel magnetite tissue engineering method for reparative angiogenesis
Angiogenic cell therapy represents a novel strategy for ischemic diseases, but some patients show poor responses. We investigated the therapeutic potential of an induced pluripotent stem (iPS) cell sheet created by a novel magnetite tissue engineering technology (Mag-TE) for reparative angiogenesis. Mouse iPS cell-derived Flk-1(+) cells were incubated with magnetic nanoparticle-containing lipos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 97 12 شماره
صفحات -
تاریخ انتشار 1998